Se-doping dependence of the transport properties in CBE-grown InAs nanowire field effect transistors

نویسندگان

  • Leonardo Viti
  • Miriam S Vitiello
  • Daniele Ercolani
  • Lucia Sorba
  • Alessandro Tredicucci
چکیده

We investigated the transport properties of lateral gate field effect transistors (FET) that have been realized by employing, as active elements, (111) B-oriented InAs nanowires grown by chemical beam epitaxy with different Se-doping concentrations. On the basis of electrical measurements, it was found that the carrier mobility increases from 103 to 104 cm2/(V × sec) by varying the ditertiarybutyl selenide (DtBSe) precursor line pressure from 0 to 0.4 Torr, leading to an increase of the carrier density in the transistor channel of more than two orders of magnitude. By keeping the DtBSe line pressure at 0.1 Torr, the carrier density in the nanowire channel measures ≈ 5 × 1017 cm-3 ensuring the best peak transconductances (> 100 mS/m) together with very low resistivity values (70 Ω × μm) and capacitances in the attofarad range. These results are particularly relevant for further optimization of the nanowire-FET terahertz detectors recently demonstrated.PACS: 73.63.-b, 81.07.Gf, 85.35.-p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Field dependent transport properties in InAs nanowire field effect transistors.

We present detailed studies of the field dependent transport properties of InAs nanowire field-effect transistors. Transconductance dependence on both vertical and lateral fields is discussed. Velocity-field plots are constructed from a large set of output and transfer curves that show negative differential conductance behavior and marked mobility degradation at high injection fields. Two dimen...

متن کامل

Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors.

Due to the unique physical properties, small bandgap III-V semiconductor nanowires such as InAs and InSb have been extensively studied for the next-generation high-speed and high-frequency electronics. However, further CMOS applications are still limited by the lack of efficient p-doping in these nanowire materials for high-performance p-channel devices. Here, we demonstrate a simple and effect...

متن کامل

Transport properties of InAs nanowire field effect transistors: The effects of surface states

It is shown that interface trap states have pronounced effects on carrier transport and parameter extraction from top-gated InAs nanowire field effect transistors NWFETs . Due to slow surface state charging and discharging, the NWFET characteristics are time dependent with time constants as long as 45 s. This is also manifested in a time-dependent extrinsic transconductance that severely affect...

متن کامل

Doping Incorporation in InAs nanowires characterized by capacitance measurements

Sn and Se doped InAs nanowires are characterized using a capacitance-voltage technique where the threshold voltages of nanowire capacitors with different diameter are determined and analyzed using an improved radial metal-insulator-semiconductor field-effect transistor model. This allows for a separation of doping in the core of the nanowire from the surface charge at the side facets of the nan...

متن کامل

Transport coefficients of InAs nanowires as a function of diameter.

InAs nanowires (NWs) have been the subject of intensive research recently in both synthesis and transport studies due to their potential for future high-speed nanoelectronic devices. Back-, top-, and wrap-gate NW fieldeffect transistors (NWFETs) have been employed to study the low-field transport properties of InAs NWs at room temperature. Among these properties, the capacitive effects of inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012